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Abstract: In order to determine the effect of cadmium stress on nitrification rate and N2O emission traits of different tobacco planting
soils, an incubation experiment of acid and neutral soils under two concentrations (10 and 100 mg/kg) of Cd addition were conducted.
The results showed that, 1) The concentration of ammonium in acid and neutral tobacco soils decreased gradually with the extension
of incubation time, while the concentration of nitrate increased throughout the whole incubation periods, and this tendency was not
affected by low and high concentrations of Cd stress; 2) Soil net nitrification rate fluctuated strongly during the 1-7 d of incubation and
Cd stress could stimulate net nitrification rate of acid soil type 1 on the 1st day; 3) The maximum of N>O emission rate and cumulative
emission of acid soils were higher than that of neutral soils in general, and the high Cd stress could stimulate the initial N2O emission
rate of acid soil 1, and the cumulative N2O emission of acid soil 1 was 355.42 pg/kg at the end of the incubation; 4) Soil pH and total
nitrogen had significantly negative correlations with soil N2O emission rate and cumulative emission, but soil organic matter and
ammonium had significantly positive correlations with soil N2O emission rate and the cumulative emission. These results indicated
that N2O emission of tobacco planting soils was affected by soil pH and N substrate. The N2O cumulative emission of acid soils was
much higher than neutral soils and they could be stimulated by the high Cd stress. So, the reduction of N2O emission could be achieved
by improving soil acidification in the future.
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Table 1 The physico-chemical properties of tobacco planting soils
Soils Sampling sites pH Soil organic matter/ Total nitrogen/ NO3;N/ NH,*-N/ Available phosphorous/  Available potassium/
pne (ke (ke (mgkg') (mgke!)  (mgke!) (mg kg™)
1 7.50a  15.65bc 2.10a 14.76¢ 14.11b 15.38¢ 172.50b
2 691b  19.23b 1.96ab 27.24a 15.72b 18.08¢c 198.22a
1 5.6lc  29.50a 1.76b 13.65¢ 26.03a 36.56b 190.08a
2 5.83¢c  23.54ab 1.85ab 22.93b 17.62b 49.42a 206.13a
<0.05

Note: Means followed different lowercase letters in the same column presented significance at p<0.05 level.
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Fig. 1 Dynamics of soil ammonium and nitrate nitrogen under Cd stress
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Fig.2 Dynamics of net nitrification rates in different soils under Cd stress
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Fig.4 Dynamics of soil N2O cumulative emission under Cd stress



40 2022 43
2 N20
Table 2 Pearson’s correlation coefficients of soil physic-chemical properties with soil net nitrification rate and N2O emission traits
H
Parameter P Soil organic matter Total nitrogen ~ NOs3™-N NH,*-N Available phosphorus Auvailable potassium
-0.044 -0.010 -0.046 0.261* -0.075 0.069 0.232
Net nitrification rate
N,O -0.437%**  (.528%** -0.462%** -0.365%* 0.575%%* 0.266* 0.005
N,O Emission rate
N,O -0.384%%% (.47 **k* -0.410%** -0.328* 0.516***  0.225 -0.002
N,O Cumulative emission
*oowk ke p<0.05 p<0.01  p<0.001
Note: *, ** and *** indicate significant correaltions at p<0.05, p<0.01 and p<0.001 level, respectively.
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