• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)收录期刊
  • JST 日本科学技术振兴机构数据库收录期刊
  • WJCI 科技期刊世界影响力指数报告来源期刊
Advanced Search
LU Anbin, ZENG Shuaibo, PI Kai, LONG Benshan, MO Zejun, DUAN Lili, LIU Renxiang. Analysis of Photosynthetic Characteristics of Hybrid Species and the Formation Mechanism of Biomass Heterosis in Tobacco Leaves[J]. CHINESE TOBACCO SCIENCE, 2024, 45(2): 7-14. DOI: 10.13496/j.issn.1007-5119.2024.02.002
Citation: LU Anbin, ZENG Shuaibo, PI Kai, LONG Benshan, MO Zejun, DUAN Lili, LIU Renxiang. Analysis of Photosynthetic Characteristics of Hybrid Species and the Formation Mechanism of Biomass Heterosis in Tobacco Leaves[J]. CHINESE TOBACCO SCIENCE, 2024, 45(2): 7-14. DOI: 10.13496/j.issn.1007-5119.2024.02.002

Analysis of Photosynthetic Characteristics of Hybrid Species and the Formation Mechanism of Biomass Heterosis in Tobacco Leaves

More Information
  • Received Date: September 24, 2023
  • Revised Date: March 14, 2024
  • Available Online: May 15, 2024
  • To analyze the formation mechanism of biomass heterosis in tobacco leaves from the perspective of photosynthetic physiology, this study used six parents and their hybrid combinations with significant biomass differences to measure biomass, photosynthetic characteristics, chlorophyll contents, and expression levels of photosynthetic-related genes in the tested materials. The relationship between biomass heterosis in tobacco leaves and photosynthetic characteristics of hybrids as well as heterosis formation mechanism were analyzed based on the photosynthetic characteristics of these hybrid species. Results showed that the biomass of tobacco hybrids had heterosis, with high-parent heterosis and mid-parent heterosis rate of 55.56% and 77.78%. In addition, Photosynthetic related indicators such as net photosynthetic rate, intercellular CO2 concentration, and chlorophyll a content of the hybrid showed heterosis, with the combination rates of high-parent heterosis and mid-parent heterosis being 55.56%, 100%, 66.67% and 88.89%, 100%, 77.78%, respectively. There is a significant correlation between biomass heterosis and net photosynthetic rate, with correlation coefficients of 0.73 (p<0.05). The relative expression levels of NtLhcb1, NtLhcb2, NtPsbA, NtatpF, and Ntrbcl genes related to photosynthesis showed significant differences between strong and weak heterosis hybrids, and their expression levels were significantly positively correlated with the heterosis of biomass. The results indicate that the up-regulation of NtLhcb1, NtLhcb2, NtPsbA, NtatpF, and Ntrbcl genes in the hybrids enhances the photosynthetic capacity of the hybrid.

  • [1]
    刘仁祥, 夏志林, 崔庆伟, 等. 贵州烤烟育种工作进展与对策探讨[J]. 山地农业生物学报, 2016, 35(4): 1-6.

    LIU R X, XIA Z L, CUI Q W, et al. Progress in tobacco breeding in Guizhou Province and discussion for solutions[J]. Journal of Mountain Agriculture and Biology, 2016, 35(4): 1-6.
    [2]
    孟军, 吴迪, 夏志林, 等. 干旱胁迫下烟草脯氨酸杂种优势及相关基因差异表达分析[J]. 中国烟草科学, 2018, 39(2): 1-7.

    MENG J, WU D, XIA Z L, et al. Heterosis of proline in tobacco under drought stress and differential expression analysis of related genes[J]. Chinese Tobacco Science, 2018, 39(2): 1-7.
    [3]
    HUANG M, FRISO G, NISHIMURA K, et al. Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics[J]. Journal of Proteome Research, 2013, 12(1): 491-504. doi: 10.1021/pr300952g
    [4]
    HUANG X, YANG S, GONG J, et al. Genomic architecture of heterosis for yield traits in rice[J]. Nature, 2016, 537(7622): 629-633. doi: 10.1038/nature19760
    [5]
    SHANG L, LIANG Q, WANG Y, et al. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton[J]. Theoretical and Applied Genetics, 2016, 129(7): 1429-1446. doi: 10.1007/s00122-016-2714-2
    [6]
    XIONG J, HU K, SHALBY N, et al. Comparative transcriptomic analysis reveals the molecular mechanism underlying seedling biomass heterosis in Brassica napus[J]. BMC Plant Biology, 2022, 22(1): 283. doi: 10.1186/s12870-022-03671-0
    [7]
    郑克宽, 任有志, 吴云霞, 等. 烤烟光合作用与产量形成的生理指标研究[J]. 内蒙古农牧学院学报, 1995(4): 61-66.

    ZHENG K K, REN Y Z, WU Y X, et al. A study on the photosynthesis and yield forming physiological index of tobacco[J]. Journal of Inner Mongolia Agricultural, 1995(4): 61-66.
    [8]
    HÜNER. N, DAHAL K, BODE R, et al. Photosynthetic acclimation, vernalization, crop productivity and 'the grand design of photosynthesis[J]. Journal of Plant Physiology, 2016, 203: 29-43.
    [9]
    翟勇全, 魏雪, 付江鹏, 等. 全生物降解膜覆盖对玉米生长、产量及氮素利用的影响[J]. 植物营养与肥料学报, 2022, 28(11): 2041-2051. doi: 10.11674/zwyf.2022129

    ZHAI Y Q, WEI X, FU J P, et al. Effects of fully biodegradable film mulch on growth, yield and nitrogen utilization of maize[J]. Journal of Plant Nutrition and Fertilizer, 2022, 28(11): 2041-2051. doi: 10.11674/zwyf.2022129
    [10]
    RADOEV M, BECKER H-C, ECKE W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping[J]. Genetics, 2008, 179(3): 1547-1558. doi: 10.1534/genetics.108.089680
    [11]
    鹿莹, 梁晓芳, 管恩森, 等. 移栽时间对烤烟光合特性、产量和品质的影响[J]. 中国烟草科学, 2014, 35(1): 48-53.

    LU Y, LIANG X F, GUAN E S, et al. Effects of transplanting time on photosynthesis characteristics, yield and quality of flue-cured tobacco[J]. Chinese Tobacco Science, 2014, 35(1): 48-53.
    [12]
    梁棋政, 朱列书, 杨怀千. 烟草源库关系研究进展[J]. 现代农业科技, 2009(14): 18-20. doi: 10.3969/j.issn.1007-5739.2009.14.006

    LIANG Q Z, ZHU L S, YANG H Q. Research progress on source-sink relationship of tobacco[J]. Modern Agricultural Science and Technology, 2009(14): 18-20. doi: 10.3969/j.issn.1007-5739.2009.14.006
    [13]
    NOWICKA B, CIURA J, SZYMANSKA R, et al. Improving photosynthesis, plant productivity and abiotic stress tolerance-current trends and future perspectives[J]. Journal of Plant Physiology, 2018, 231: 415-433. doi: 10.1016/j.jplph.2018.10.022
    [14]
    STANDFUSS J, KUHLBRANDT W. The three isoforms of the light-harvesting complex II: spectroscopic features, trimer formation, and functional roles[J]. Journal of Biological Chemistry, 2004, 279(35): 36884-36891. doi: 10.1074/jbc.M402348200
    [15]
    PERVEEN S, QU M, CHEN F, et al. Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice[J]. Journal of Experimental Botany, 2020, 71(16): 4944-4957. doi: 10.1093/jxb/eraa248
    [16]
    FOYER C, NEUKERMANS J, QUEVAL G, et al. Photosynthetic control of electron transport and the regulation of gene expression[J]. Journal of Experimental Botany, 2012, 63(4): 1637-1661. doi: 10.1093/jxb/ers013
    [17]
    SUDA Y, YOSHIKAWA T, OKUDA Y, et al. Comparative analysis of a CFo ATP synthase subunit II homologue derived from marine and fresh-water algae[J]. Journal of Bioscience and Bioengineering, 2009, 108(5): 365-368. doi: 10.1016/j.jbiosc.2009.05.017
    [18]
    唐丽媛, 李兴河, 王海涛, 等. 高产杂交棉F1与双亲的光合性能及相关基因表达比较[J]. 河北农业大学学报, 2022, 45(3): 16-24.

    TANG L Y, LI X H, WANG H T, et al. Analysis of photosynthesis characteristics and related gene expression between high yield hybrid cotton F1 and its parents[J]. Journal of Hebei Agricultural University, 2022, 45(3): 16-24.
    [19]
    ANDRIANOV V, BORISJUK N, POGREBNYAK N, et al. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass[J]. Plant Biotechnology Journal, 2010, 8(3): 277-287. doi: 10.1111/j.1467-7652.2009.00458.x
    [20]
    ZHANG X, ZHANG L, ZHANG J, et al. Haploid induction in allotetraploid tobacco using DMPs mutation[J]. Planta, 2022, 255(5): 98. doi: 10.1007/s00425-022-03877-4
    [21]
    MO. Z J, LUO W, PI K, et al. Comparative transcriptome analysis between inbred lines and hybrids provides molecular insights into K(+) content heterosis of tobacco (Nicotiana tabacum L.)[J]. Frontiers in Plant Science, 2022, 13: 940787.
    [22]
    武圣江, 赵会纳, 王松峰, 等. 贵州特色烤烟农艺性状与光合特性研究[J]. 中国烟草科学, 2014, 35(1): 113-116.

    WU S J, ZHAO H N, WANG S F, et al. Agronomic attributes and photosynthetic characteristics of flue-cured tobacco with Guizhou characteristics[J]. Chinese Tobacco Science, 2014, 35(1): 113-116.
    [23]
    努尔凯麦尔·木拉提, 杨亚杰, 帕尔哈提·阿布都克日木, 等. 小麦叶绿素含量测定方法比较[J]. 江苏农业科学, 2021, 49(9): 156-159.

    MULATI N, YANG Y J, ABUDUKRIMU P, et al. Comparative study on determination methods of chlorophyll content in wheat[J]. Jiangsu Agricultural Science, 2021, 49(9): 156-159.
    [24]
    GAO J, KAUFMAN L. Blue-light regulation of the Arabidopsis thaliana Cab1 gene[J]. Plant Physiology, 1994, 104(4): 1251-1257. doi: 10.1104/pp.104.4.1251
    [25]
    XU Y H, LIU R, YAN L, et al. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(3): 1095-1106. doi: 10.1093/jxb/err315
    [26]
    SRILATHA P, YOUSUF F, METHRE R, et al. Physical interaction of RTBV ORFI with D1 protein of Oryza sativa and Fe/Zn homeostasis play a key role in symptoms development during rice tungro disease to facilitate the insect mediated virus transmission[J]. Virology, 2019, 526: 117-124. doi: 10.1016/j.virol.2018.10.012
    [27]
    RUHLE T, RAZEGHI J, VAMVAKA E, et al. The arabidopsis protein conserved only in the gree lineage 160 promotes the assembly of the membranous part of the chloroplast ATP synthase[J]. Journal of Plant Physiology, 2014, 165(1): 207-226. doi: 10.1104/pp.114.237883
    [28]
    WHITNEY S, BIRCH R, KELSO C, et al. Improving recombinant rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone[J]. Proceedings of the National Academy of Sciences, 2015, 112(11): 3564-3569. doi: 10.1073/pnas.1420536112
    [29]
    LIVAK K, SCHMITTGEN T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [30]
    陈泽辉. 群体与数量遗传学[M]. 贵阳: 贵州科技出版社, 2019.

    CHEN Z H. Population and quantitative genetics[M]. Guiyang: Guizhou Science and Technology Publishing House, 2019.
    [31]
    BRUCE A. The Mendelian theory of heredity and the augmentation of vigor[J]. Science, 1910, 32(827): 627-628. doi: 10.1126/science.32.827.627.b
    [32]
    EAST E M. Heterosis[J]. Genetics, 1936, 21(4): 375-397. doi: 10.1093/genetics/21.4.375
    [33]
    CHEVERUD J, ROUTMAN E. Epistasis and its contribution to genetic variance components[J]. Genetics, 1995, 139(3): 1455-1461. doi: 10.1093/genetics/139.3.1455
    [34]
    李姜玲, 杨澜, 阮仁武, 等. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007. doi: 10.3864/j.issn.0578-1752.2021.23.006

    LI J L, YANG L, RUAN R W, et al. Analysis of photosynthetic characteristics of hybrid wheat at seedling stage and its use for early prediction of strong heterosis combinations[J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007. doi: 10.3864/j.issn.0578-1752.2021.23.006
    [35]
    赵明, 王美云, 李少昆. 玉米杂交种与亲本主要光合性状的比较[J]. 华北农学报, 1997(2): 40-44.

    ZHAO M, WANG M Y, LI S K. Comparison of photosynthetic characteristics of parents and hybrids of corn (Zea mays L. )[J]. Acta Agriculturae Boreali-Sinica, 1997(2): 40-44.
    [36]
    郭小龙, 赵秋玲, 张晶. 灰楸不同杂交组合杂种后代叶片特征与光合能力的关系[J]. 西南林业大学学报(自然科学), 2022, 42(2): 1-10.

    GUO X L, ZHAO Q L, ZHANG J. The relationship between leaf characteristics and photosynthetic capacity of hybrid offspring of different hybrid combinations of Chinese ash[J]. Journal of Southwest Forestry University(Natural Sciences), 2022, 42(2): 1-10.
    [37]
    BHATT J, RAO M. Heterosis in growth and photosynthetic rate in hybrids of cotton[J]. Euphytica, 1981, 30(1): 129-133. doi: 10.1007/BF00033668
    [38]
    HUO. Y J, WANG M P, WEI Y Y, et al. Overexpression of the maize psbA gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco[J]. Frontiers in Plant Science, 2016, 6: 1223.
    [39]
    RAJESH K, REDDY K, GAUTAM R, et al. Improved photosynthetic characteristics correlated with enhanced biomass in a heterotic F1 hybrid of maize (Zea mays L. )[J]. Photosynthesis Research, 2021, 147(3): 253-267. doi: 10.1007/s11120-021-00822-6
    [40]
    CHEN C F, LI J J, YU Y, et al. Stay-green and light-harvesting complex II chlorophyll a/b binding protein are involved in albinism of a novel albino tea germplasm ‘Huabai 1’[J]. Scientia Horticulturae, 2022, 293: 110653.
    [41]
    BIANCHI S, BETTERLE N, KOURIL R, et al. Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection[J]. The Plant Cell, 2011, 23(7): 2659-2679. doi: 10.1105/tpc.111.087320
    [42]
    LUO J, ABID M, TU J, et al. Genome-wide identification of the LHC gene family in kiwifruit and regulatory role of AcLhcb3.1/3.2 for chlorophyll a content[J]. International Journal of Molecular Sciences, 2022, 23(12): 6528. doi: 10.3390/ijms23126528
    [43]
    DENG Y S, KONG F Y, ZHOU B, et al. Heterology expression of the tomato LeLhcb2 gene confers elevated tolerance to chilling stress in transgenic tobacco[J]. Plant Physiology and Biochemistry, 2014, 80: 318-327. doi: 10.1016/j.plaphy.2014.04.017
    [44]
    REN R C, WANG L L, ZHANG L, et al. DEK43 is a P-type pentatricopeptide repeat (PPR) protein responsible for the Cis-splicing of nad4 in maize mitochondria[J]. Journal of Integrative Plant Biology, 2020, 62(3): 299-313. doi: 10.1111/jipb.12843
    [45]
    EEVI R, KETTUNEN R, EVA M. Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. dephosphorylation is a prerequisite for degradation of damaged D1[J]. Journal of Biological Chemistry, 1996, 271(25): 14870-14875. doi: 10.1074/jbc.271.25.14870
    [46]
    SAEED I, BACHIR D, CHEN L, et al. The expression of TaRca2-α gene associated with net photosynthesis rate, biomass and grain yield in bread wheat (Triticum aestivum L.) under field conditions[J]. Plos One, 2016, 11(8): e161308.

Catalog

    Article views (157) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return