Abstract:
Tobacco bacterial wilt is a bacterial disease caused by
Ralstonia solanacearum, and is one of the main diseases that harm China's tobacco production. Analysis of the resistance genetics of tobacco bacterial wilt has important significance in guiding disease resistance breeding. In this study, a multi-generation combined analysis method of the main gene + multi-gene mixed genetic model was used to construct two different hybrid combination groups for the analysis of population genetic effects with multiple resistance/susceptible materials as parents. The results showed that bacterial wilt resistance of tobacco appeared to be a quantitative trait and the inheritance of Yanyan 97 fit to a mixed genetic model of two major genes with additive-dominance-epistatic effects plus poly-genes with additive-dominance-epistatic effects. The inheritance of Fandi No.3-C fit to a mixed genetic model of one major gene with additive-dominance effects plus poly-genes with additive-dominance-epistatic effects. The results also indicated that tobacco bacterial wilt resistance is dominated by additive effects, which is supplemented by dominance effects, and is conducive to allele aggregation breeding and early generation selection.