Abstract:
The
nosZ-type bacterial community variation in flue-cured tobacco cultivation soils under the condition of plant growth promoting rhizobacteria (PGPR) application plus reduction of chemical fertilizer (RCF) was investigated so as to reveal the microbial mediated mechanisms of the denitrifying process in these specific soils, and to establish reasonable fertilizer regimes and provide theoretical foundations for maintaining soil quality. The study was carried out in a traditional flue-cured tobacco cultivation field in Miyi County, Sichuan Province. Chemical analysis and terminal restriction fragment length polymorphism (T-RFLP) were conducted to study the variation of soil physicochemical parameters and
nosZ-type bacterial community composition under the condition of PGPR+RCF fertilizer. The results showed that the soil pH and available nitrogen were significantly increased under the treatment of PGPR+RCF fertilizer as compared with the conventional fertilization (CK) (
p<0.05). Meanwhile, the soil organic carbon and total nitrogen were also increased although not significantly, and available phosphorus and available potassium were also increased under some fertilizer treatments (30% RCF). The T-RFLP experiment showed that using PGPR in combination with fertilizers increased the composition and diversity of the
nosZ-type bacterial community.
Rhodobacter and
Bacterium were the dominant genera in the soils under the five different fertilization treatments, while
Bradyrhizobium and
Azospirillum were dominant in the soil treated with only PGPR inocula. The Shannon diversity index and Evenness in the soil under total amount chemical fertilizer plus PGPR inoculant were the lowest among the five different fertilizer treatments, while those diversity indexes in the soil under the other four fertilizer treatments showed no significantly difference. Redundancy Analysis (RDA) showed that soil pH, soil organic matter and available potassium were the most important factors in shaping
nosZ-type bacterial community in the flue-cured tobacco cultivation soil. Taken together, the using of PGPR in combination with reduced chemical fertilizers would change the soil physicochemical properties thus modify the composition of
nosZ-type bacterial community composition, and increase their diversity.