• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)收录期刊
  • JST 日本科学技术振兴机构数据库收录期刊
  • WJCI 科技期刊世界影响力指数报告来源期刊
高级检索

超量共表达NsAKT1AtDWF4烟草抗渗透胁迫能力研究

韦春, 秦利军

韦春, 秦利军. 超量共表达NsAKT1AtDWF4烟草抗渗透胁迫能力研究[J]. 中国烟草科学, 2020, 41(6): 7-16. DOI: 10.13496/j.issn.1007-5119.2020.00.162
引用本文: 韦春, 秦利军. 超量共表达NsAKT1AtDWF4烟草抗渗透胁迫能力研究[J]. 中国烟草科学, 2020, 41(6): 7-16. DOI: 10.13496/j.issn.1007-5119.2020.00.162
WEI Chun, QIN Lijun. Study on Osmotic Stress Resistance of Tobacco by Overexpressing NsAKT1 and AtDWF4[J]. CHINESE TOBACCO SCIENCE, 2020, 41(6): 7-16. DOI: 10.13496/j.issn.1007-5119.2020.00.162
Citation: WEI Chun, QIN Lijun. Study on Osmotic Stress Resistance of Tobacco by Overexpressing NsAKT1 and AtDWF4[J]. CHINESE TOBACCO SCIENCE, 2020, 41(6): 7-16. DOI: 10.13496/j.issn.1007-5119.2020.00.162

超量共表达NsAKT1AtDWF4烟草抗渗透胁迫能力研究

基金项目: 

贵州省科技计划项目“烟草钾离子通道蛋白及BR对植株抗非生物胁迫研究”{黔科合LH[2016]7449号},贵州大学人才培育项目“油菜素内酯介导的烟草抗TMV机理研究”{黔科合平台人才[2018]5781号}

详细信息
    作者简介:

    韦春(1995-),在读硕士,从事植物基因工程相关研究。E-mail:1751608430@qq.com

    通讯作者:

    秦利军,E-mail:leequine_chin@126.com

Study on Osmotic Stress Resistance of Tobacco by Overexpressing NsAKT1 and AtDWF4

  • 摘要: 为了解钾和油菜素内酯(BRs)在调控植物抗逆境胁迫中的作用,以超量表达K+吸收基因NsAKT1及BRs合成基因AtDWF4的转基因烟草为材料,分析PEG渗透胁迫对其形态及抗性指标等的影响。结果表明,PEG胁迫3 d时,转基因烟草SOD活性即达到极值且显著高于非转基因烟草(Wt),其中以共转AKT1/DWF4植株中SOD活性最高;而PEG胁迫1 d时,3种转基因植株的POD活性均显著(p<0.05)高于Wt植株,且共转AKT1/DWF4植株中POD活性分别是单转AKT1植株的1.28倍、单转DWF4植株的1.40倍和Wt植株的1.90倍;PEG胁迫第3天时,共转AKT1/DWF4植株中CAT活性增幅最大,达59.18%,显著高于其他2种转基因烟草。同时,H2O2和MDA含量测定表明,PEG处理后Wt中MDA和H2O2含量均在第5天时达极值,分别为58.52 nmol/g和38.21 μg/g,均显著高于转基因烟草。另外,特征基因表达分析表明,NsAKT1AtDWF4可能协同调控共转AKT1/DWF4烟株对PEG渗透胁迫的抗性。本研究为进一步揭示K和BRs协同介导的烟草抗逆境胁迫应答机制以及创制优良的烟草新种质奠定理论依据。
    Abstract: In order to study the role of potassium and BRs in regulating plant resistance to stresses, the transgenic tobaccos overexpressing the K+ absorption gene NsAKT1 and the BRs synthetic gene AtDWF4 were used to analyze the effects of PEG osmotic stress on morphology and resistance-related physicochemical indexes of transgenic tobaccos. The results showed that SOD activities of the transgenic tobacco plants reached the maximum values at 3 d after PEG treatment, which was significantly higher than that of non-transgenic tobacco (Wt). Among them, the highest SOD enzyme activity was in plants co-transformed with AKT1/DWF4. The POD enzyme activities of the three transgenic plants were significantly higher than that of Wt plants at 1 d after PEG stress (p<0.05), and the POD enzyme activities in the AKT1/DWF4 co-transformed tobacco plants were 1.28 folds, 1.40 folds and 1.90 folds higher than that of trans-AKT1 plants, trans-DWF4 plants and Wt plants, respectively. Three days after PEG treatment, CAT enzyme activities in the AKT1/DWF4 plants increased the most, up to 59.18%, which was significantly higher than the other two transgenic tobaccos. Meanwhile, the determination of H2O2 and MDA contents showed that the maximum values of MDA and H2O2 in Wt were 58.52 nmol/g and 38.21 μg/g, respectively. Five days after PEG stress, these values were significantly higher than those in transgenic tobacco plants. Additionally, the expression analysis of characteristic genes indicated that NsAKT1 and AtDWF4 might synergistically regulate the resistance to PEG osmotic stress of the AKT1/DWF4 tobacco lines. The results of this study provided a theoretical basis for further understanding of the mechanism of K and BRs synergistically mediated tobacco response to stresses and the creation of excellent new tobacco germplasm.
  • [1]

    MARON L. Phospholipids:novel players in the complex regulation of potassium channels in plants[J]. The Plant Journal, 2020, 102(4):647-648.

    [2]

    WHITE, PHILIP J, KARLEY, ALISON J. Potassium[J]. Plant Cell Monographs, 2010, 17:199-224.

    [3]

    YAMAMOTO T, UMEMURA S, KANEKO H. Effect of exogenous potassium on the reduction in tar, nicotine and carbon monoxide deliveries in the mainstream smoke of cigarettes[J]. Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 2013, 14(6):379-385.

    [4] 曲平治,刘贯山,刘好宝,等. 烟草钾离子通道研究展[J]. 中国烟草科学,2009,30(2):74-80.

    QU Z P, LIU G S, LIU H B, et al. Research advances in tobacco potassium ion channel[J]. Chinese Tobacco Science, 2009, 30(2):74-80.

    [5]

    SZCZERBA M W, BRITTO D T, KRONZUCKER H J. K+ transport in plants:physiology and molecular biology[J]. Journal of Plant Physiology, 2009, 166(5):447-466.

    [6]

    VÉRY A A, SENTENAC H. Molecular mechanisms and regulation of K+ transport in higher plants[J]. Annual Review of Plant Biology, 2003, 54(1):575-603.

    [7]

    SANCHEZ-BARRENA M J, CHAVES-SANJUAN A, RADDATZ N, et al. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23[J]. Plant physiology, 2020, 182(4):19.01084.

    [8]

    GAMBALE F, UOZUMI N. Properties of shaker-type potassium channels in higher plants[J]. The Journal of Membrane Biology, 2006, 210(1):1-19.

    [9]

    LI J, WU W, WANG Y. Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress[J]. Journal of Integrative Plant Biology, 2017, 59(12):895-909.

    [10]

    FUCHS I, STOLZLE S, IVASHIKINA N, et al. Rice K+ uptake channel OsAKT1 is sensitive to salt stress[J]. Planta, 2004, 221(2):212-221.

    [11]

    AHMAD I, MIAN A, MAATHUIS F J. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance[J]. Journal of Experimental Botany, 2016, 67(9):2689-2698.

    [12]

    PELEG Z, BLUMWALD E. Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology, 2011, 14(3):290-295.

    [13]

    KUMAR P P. Regulation of biotic and abiotic stress responses by plant hormones[J]. Plant Cell Reports, 2013, 32(7):943.

    [14]

    VERMA V, RAVINDRAN P, KUMAR P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology, 2016, 16(1):86-96.

    [15]

    LIAQAT S, UMAR S, SAFFEULLAH P, et al. Protective effect of 24-Epibrassinolide on barley plants growing under combined stress of salinity and potassium deficiency[J]. Journal of Plant Growth Regulation, 2020:1-16.

    [16]

    NOLAN T, VUKASINOVIC N, LIU D, et al. Brassinosteroids:multidimensional regulators of plant growth, development, and stress responses[J]. The Plant Cell, 2020, 32(2):295-318.

    [17]

    SAKAGUCHI J, MATSUSHITA T, WATANABE Y. DWARF4 accumulation in root tips is enhanced via blue light perception by cryptochromes[J]. Plant, Cell&Environment, 2019, 42(5):1615-1629.

    [18]

    ZHAO B L, LI J. Regulation of brassinosteroid biosynthesis and inactivation[J]. Journal of Integrative Plant Biology, 2012, 54(10):746-759.

    [19]

    SI J, SUN Y, WANG L, et al. Functional analyses of Populus euphratica brassinosteroid biosynthesis enzyme genes DWF4(PeDWF4) and CPD (PeCPD) in the regulation of growth and development of Arabidopsis thaliana[J]. Journal of Biosciences, 2016, 41(4):727-742.

    [20]

    SAHNI S, PRASAD B D, LIU Q, et al. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance[J]. Scientific Reports, 2016, 6(1):28298.

    [21]

    REN C, HAN C, PENG W, et al. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis[J]. Plant physiology, 2009, 151(3):1412-1420.

    [22]

    LI X J, CHEN X J, GUO X, et al. DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato[J]. Plant Biotechnology Journal, 2016, 14(3):1021-1033.

    [23]

    HUDZIECZEKA V, CEGANA R, CERMAK T, et al. Agrobacterium rhizogenes-mediated transformation of a dioecious plant model Silene latifolia[J]. New Biotechnology, 2019, 48:20-28.

    [24] 谭颖,秦利军,赵丹,等. 共转化法获得HAK1基因高表达烟草提高植株钾吸收能力[J]. 植物生理学报,2013,49(7):689-699.

    TAN Y, QIN L J, ZHAO D, et al. The overexpression of HAK1 gene improved the absorbing ability for potassium in transgenic tobacco by co-transformation method[J]. Plant Physiology Journal, 2013, 49(7):689-699.

    [25] 张祎,秦利军,赵丹,等. 超量表达NtHAK1基因提高烟草干旱胁迫能力[J]. 植物生理学报,2017,53(8):1444-1452.

    ZHANG Y, QIN L J, ZHAO D, et al. Improvement of drought-stress in NtHAK1-overexpressing Nicotiana tabacum[J]. Plant Physiology Journal, 2017, 53(8):1444-1452.

    [26] 郭兆奎,杨谦,姚泉洪,等. 转拟南芥AtNHXl基因促进烟草对钾吸收的研究[J]. 高技术通讯,2007(17):1174-1179.

    GUO Z K, YANG Q, YAO H Q, et al. Transgenic tobacco of Arabidopsis thaliana AtNHX1 promotes plant potassium uptake[J]. Chinese High Technology Letters, 2007(17):1174-1179.

    [27]

    WANG M, ZHENG Q, SHEN Q, et al. The critical role of potassium in plant stress response[J]. International Journal of Molecular Sciences, 2013, 14:7370-7390.

    [28]

    SONG W, LIU S, MENG L, et al. Potassium deficiency inhibits lateral root development in tobacco seedlings by changing auxin distribution[J]. Plant and Soil, 2015, 396(1):163-173.

    [29]

    SHABALA S, CUIN T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4):651-669.

    [30] 库文珍,赵运林,董萌. 植物Shaker K+通道的研究进展[J]. 中国生物工程杂志,2012,32(10):112-118.

    KU W Z, ZHAO Y L, DONG M. Advances on shaker-type K+ channels in plants[J]. China Biotechnology, 2012, 32(10):112-118.

    [31]

    HIRSCH R E, LEWIS B D, SPALDING E P, et al. A role for the AKT1 potassium channel in plant nutrition[J]. Science, 1998, 280(5365):918-921.

    [32]

    PILOT G, GAYMARD F, MOULINE K, et al. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant[J]. Plant Molecular Biology, 2003, 51:773-787.

    [33]

    GROVE M D, SPENCER G F, ROHWEDDER W K, et al. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728):216-217

    [34]

    CLOUSE S D, SASSE J. Brassionsteroids:essential regulators of plant growth and development[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49:427-451

    [35]

    TANVEER M, SHAHZAD B, SHARMA A. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants:a review[J]. Plant Physiology and Biochemistry, 2018, 130:69-79.

    [36]

    DENG X, ZHU T, ZHANG D, et al. The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana[J]. Journal of Experimental Botany, 66(20):6219-6232.

    [37]

    FARIDUDDIN Q, YUSUF M, AHMAD I, et al. Brassinosteroids and their role in response of plants to abiotic stresses[J]. Biologia Plantarum, 2014, 58(1):9-17.

    [38]

    CHOE S, DILKES B P, FUJIOKA S. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis[J]. The Plant Cell, 1998, 10(2):231-243

    [39]

    KVASNICA M, OKLESTKOVA J, BAZGIER V, et al. Biological activities of new monohydroxylated brassinosteroid analogues with a carboxylic group in the side chain[J]. Steroids, 2014, 85:58-64.

    [40]

    HASANUZZAMAN M, BORHANNUDDIN BHUYAN M H M, NAHAR K, et al. Potassium:a vital regulator of plant responses and tolerance to abiotic stresses[J]. Agronomy, 2018, 8:31-60.

    [41]

    NOLAN T, CHEN J, YIN Y. Cross-talk of Brassinosteroid signaling in controlling growth and stress responses[J]. Biochemical Journal, 2017, 474(16):2641-2661.

    [42]

    YU T F, XU Z S, GUO J K, et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA[J]. Scientific Reports, 2017, 7:1-14.

    [43]

    GAO S, WANG Y, YU S, et al. Effects of drought stress on growth, physiology and secondary metabolites of two Adonis species in Northeast China[J]. Scientia Horticulurae, 2020, 259(3):259-269.

    [44]

    IVASHIKINA N, BECKER D, ACHE P, et al. K+ channel profile and electrical properties of Arabidopsis root hairs[J]. FEBS Letters, 2001, 508(3):463-469.

    [45]

    TALAAT N B, ABDALLAH A M. Effect of 28-homobrassinolide and 24-epibrassinolide on the growth, productivity and nutritional value of two faba bean (Vicia faba L.) cultivars[J]. Archives of Agronomy and Soil Science, 2010, 56(6):649-669.

    [46]

    FAROOQ M, WAHID A, BASRA S M A, et al. Improving water relations and gas exchange with brassinosteroids in rice under drought stress[J]. Journal of Agronomy and Crop Science, 2009, 195(4):262-269.

    [47]

    DIVI U K, RAHMAN T, KRISHNA P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways[J]. BMC Plant Biology, 2010, 10:151-156.

计量
  • 文章访问数:  123
  • HTML全文浏览量:  0
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-09-14
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2020-12-27

目录

    /

    返回文章
    返回