Alteration of Bacterial Community Structures of Tobacco Strips During Controlled Atmosphere Aging
-
摘要: 气调醇化是片烟醇化的一种方法。微生物尤其是细菌在片烟醇化过程中对烟叶的吸食品质起着至关重要的作用。为研究气调醇化过程中片烟细菌群落结构变化规律,利用Illumina MiSeq测序平台比较气调防霉杀虫阶段(S1)、气调醇化阶段(S2)及气调保质阶段(S3)共36份样品的细菌16S rDNA序列的多样性。结果表明,从S1到S3的过程中,片烟中细菌的物种丰富度和多样性水平呈增加趋势。S1阶段片烟的优势种群为鞘氨醇单胞菌属、假单胞菌属和甲基杆菌属,其占比在整个气调醇化过程中呈逐渐下降趋势;S2阶段的优势种群为芽孢杆菌属、鞘氨醇单胞菌属和伯克霍尔德菌属,其中芽孢杆菌属和伯克霍尔德菌属在整个气调醇化过程中占比呈先上升后下降的趋势;S3阶段细菌种群分布较为均匀。非度量多维尺度分析结果表明,3个醇化阶段的样品可以较明显地区分开来。可见,气调醇化过程中片烟的细菌种群组成非常丰富,不同醇化阶段活跃的微生物类群有所不同,鞘氨醇单胞菌属、假单胞菌属和甲基杆菌属主要在醇化前期参与了烟叶醇化过程,而芽孢杆菌属和伯克霍尔德菌属则主要在醇化后期发挥着微生物醇化的作用。Abstract: Controlled atmosphere aging (CAA) is a method of tobacco strips aging. Microorganisms, especially bacteria, play an important role in smoking quality of tobacco during the aging process. In order to study the alteration of bacterial community structure in tobacco strips during the process of CAA, the diversity of bacterial 16S rDNA sequences were carried out. 36 samples were compared by using Illumina MiSeq sequencing platform in three stages including the mildew and insect control stage(S1), the aging stage (S2) and the quality guarantee stage(S3). The results showed that the species richness and diversity of bacteria in tobacco strips increased from S1 to S3. The dominant populations of tobacco strips in S1 were Sphingomonas, Pseudomonas and Methylobacterium, with a proportion of which gradually decreased during the whole process of CAA. The dominant populations in S2 were Bacillus, Burkholderia and Sphingomonas, with a proportion of Bacillus and Burkholderia increased first and then decreased in the whole process. The distribution of bacteria population in S3 was more uniform. Nonmetric multidimensional scaling analysis showed that the samples of three aging stages could be distinguished clearly. It was clear that the tobacco strips in CAA process harbored abundant levels of bacteria, and the active microbial groups were different in different aging stages. Sphingomonas, Pseudomonas and Methylbacterium were mainly involved in the early process, while Bacillus and Burkholderia mainly played an important role in the later process.
-
Keywords:
- tobacco strips /
- controlled atmosphere aging /
- 16S rDNA /
- microbiota
-
-
[1] 王永红,赵敏,潘广乐,等. 仓储方式对复烤烟叶醇化品质及表面细菌多样性的影响[J]. 烟草科技,2018,51(11):36-42. WANG Y H, ZHAO M, PAN G L, et al. Effects of storage methods on aging and bacterial diversity of redried tobacco[J]. Tobacco Science & Technology, 2018, 51(11):36-42.
[2] 范坚强,陈义强,宋纪真,等. 一种四段式烟叶醇化方法:CN201210513271.8[P]. 2013-4-24. FAN J Q, CHEN Y Q, SONG J Z, et al. Four-stages alcoholization method for tobacco:CN201210513271.8[P]. 2013-4-24.
[3] 杨欣玲,杨永锋,张俊岭,等. 气调贮存技术对片烟醇化质量的影响[J]. 河南农业科学,2017,46(10):153-159. YANG X L, YANG Y F, ZHANG J L, et al. Effect of controlled atmosphere storage (CAS) technology on the alcoholization quality of flue-cured tobacco lamina[J]. Journal of Henan Agricultural Sciences, 2017, 46(10):153-159.
[4] 曾晓鹰,杨金奎,段焰青,等. 烟叶生物酶活性与其等级和醇化时间的相关性[J]. 烟草科技,2009(5):48-51. ZENG X Y, YANG J K, DUAN Y Q, et al. Enzyme activities in flue-cured tobacco and their correlations with tobacco grades and aging duration[J]. Tobacco Science & Technology, 2009(5):48-51.
[5] 朱大恒,陈锐,陈再根,等. 烤烟自然醇化与人工发酵过程中微生物变化及其与酶活性关系的研究[J]. 中国烟草学报,2001,7(2):26-30. ZHU D H,CHEN R,CHEN Z G,et al. The relationship between microorgnisms and enzyme activites in flue-cured tobacco during aging and fermentation[J]. Acta Tabacaria Sinica, 2001, 7(2):26-30.
[6] ZHAO M Q, WANG B X, LI F X, et al. Analysis of bacterial communities on aging flue-cured tobacco leaves by 16S rDNA PCR-DGGE technology[J]. Applied Microbiology and Biotechnology, 2007, 73(6):1435-1440.
[7] 陈竹亭,焉婷婷,汤朝起,等. 应用16S rDNA克隆文库技术分析陈化烟叶细菌多样性[J]. 中国烟草学报,2012,18(4):77-82. CHEN Z T, YAN T T, TANG C Q, et al. Analyzing bacterial diversity in aging flue-cured tobacco leaves using 16S rDNA clone library analysis[J]. Acta Tabacaria Sinica, 2012, 18(4):77-82.
[8] 伍雪莹,梁书利,韩双艳,等. 不同陈化期烤烟叶表细菌的多样性及发育分析[J]. 广东农业科学,2014,41(18):28-33,38.WU X Y, LIANG S L, HAN S Y, et al. Diversity and phylogenetic analysis of bacterial communities on flue-cured tobacco leaves at different aged phases[J]. Guangdong Agricultural Sciences, 2014, 41(18):28-33, 38. [9] 龚俊. 烤后片烟储存过程中微生物多样性及变化动态[D]. 上海:华东师范大学,2015.GONG J. The diversity and dynamic of microorganism on flue-cured tobacco leaves during different aged phases[D]. Shanghai:East China Normal University, 2015. [10] 包可翔,林俭,何伟,等. 不同产地和部位对片烟自然醇化过程中细菌群落结构的影响[J]. 烟草科技,2017,50(4):10-17. BAO K X, LIN J, HE W, et al. Effects of growing area and stalk position on bacterial community structure in tobacco strips during aging[J]. Tobacco Science & Technology, 2017, 50(4):10-17.
[11] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336.
[12] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23):7537-7541.
[13] DE SANTIS T Z, HUGENHOLTZ P, LARSEN N, et al. Greengenes, a Chimera-checked 16S rRNA gene database and workbench compatible in ARB[J]. Applied and Environmental Microbiology, 2006, 72(7):5069-5072.
[14] PITTA D W, PINCHAK W E, DOWD S E, et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets[J]. Microbial Ecology, 2010, 59(3):511-522.
[15] CHAO A, SHEN T J. Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample[J]. Environmental and Ecological Statistics, 2003, 10(4):429-443.
[16] CHEN C M, LI X M, YANG J K, et al. Isolation of nicotine-degrading bacterium Pseudomonas sp. Nic22, and its potential application in tobacco processing[J]. International Biodeterioration & Biodegradation, 2008, 62(3):226-231.
[17] LI H J, LI X M, DUAN Y Q, et al. Biotransformation of nicotine by microorganism:the case of Pseudomonas spp.[J]. Applied Microbiology and Biotechnology, 2010, 86(1):11-17.
[18] 杨贵芹. 两株高效尼古丁降解菌的分离鉴定及其尼古丁代谢途径的分析[D]. 杭州:浙江大学,2011.YANG G Q. Isolation, identification and nitotine metabolism pathways analysis of two nicotine-degrading bacteria[D]. Hangzhou:Zhejiang University, 2011. [19] 王继莲,李明源,马永凯,等. 细菌酶制剂对烟叶中蛋白质的降解作用研究[J]. 农业生物技术学报,2014,22(4):486-494. WANG J L, LI M Y, MA Y K, et al. Using bacterial enzyme to degrade protein in tobacco(Nicotiana tabacum) leaves[J]. Journal of Agricultural Biotechnology, 2014, 22(4):486-494.
[20] 张鸽,梁开朝,辛玉华,等. 四个国家雪茄外包皮烟叶表面细菌分离与活性测定[J]. 中国烟草科学,2018,39(2):82-88. ZHANG G, LIANG K C, XIN Y H, et al. Isolation and activity determination of surface bacteria in cigar wrapper leaves from four different countries[J]. Chinese Tobacco Science, 2018, 39(2):82-88.
[21] 薛磊,郑泽浩,郭志刚,等. 烟草增香细菌的筛选及其作用效果[J]. 中国烟草科学,2019,40(5):60-67. XUE L, ZHENG Z H, GUO Z G, et al. Screening and application of aroma-enhancing bacteria for tobacco[J]. Chinese Tobacco Science, 2019, 40(5):60-67.
[22] XIE F H, QUAN S J, LIU D H, et al. Purification and characterization of a novel α-amylase from a newly isolated Bacillus methylotrophicus strain P11-2[J]. Process Biochemistry, 2014, 49(1):47-53.
[23] 倪涵,马永凯,林连兵,等. 玉溪醇化烟叶表面细菌酶制剂对烟叶中淀粉和纤维素的降解作用[J]. 农业生物技术学报,2012,20(3):268-274. NI H, MA Y K, LIN L B, et al. Degrading starch and cellulose in tobacco leaves by bacteria enzyme agents isolated from Yuxi tobacco leaf surface[J]. Journal of Agricultural Biotechnology, 2012, 20(3):268-274.
[24] KAUR S J, GUPTA V K. Production of pectinolytic enzymes pectinase and pectin lyase by Bacillus subtilis SAV-21 in solid state fermentation[J]. Annals of Microbiology, 2017, 67(4):333-342.
[25] WEI X T, DENG X W, CAI D B, et al. Decreased tobacco-specific nitrosamines by microbial treatment with Bacillus amyloliquefaciens DA9 during the air-curing process of burley tobacco[J]. Journal of Agricultural and Food Chemistry, 2014, 62(52):12701-12706.
[26] 郑艳红,戴芸芸,杨洋,等. 废次烟叶提取液源木质素降解菌Bacillus subtilis SM降解特性[J]. 微生物学通报,2017,44(7):1525-1534. ZHENG Y H, DAI Y Y, YANG Y, et al. Lignin degrading characteristics of Bacillus subtilis SM isolated from tobacco waste extract[J]. Microbiology China, 2017, 44(7):1525-1534.
-
期刊类型引用(5)
1. 赵亮,琚绍煊,时向东,丁松爽,金一骁,刘冰洋,陈一鑫,王骏. 芽孢杆菌属在烟叶发酵和醇化中的应用研究进展. 安徽农业科学. 2024(21): 1-4 . 百度学术
2. 何伟,林俭,胡兴川,黄培元,齐凌峰,周康熙,牟文君,赵羡波,范建立,赖成连,丁宁. 原烟仓储养护过程中真菌群落变化动态研究. 中国烟草科学. 2024(06): 81-90 . 本站查看
3. 王玉华,姜振玲,崔志军,刘中庆,王微棕,高阳,孙玉军,杜传印. 醇化过程中上部烟叶芳香族氨基酸降解产物变化及其与感官品质的关系. 现代农业科技. 2022(19): 185-188+192 . 百度学术
4. 宋学茹,张立猛,卜令铎,黄智华,瞿兴,陈文华,张继来,苏友波. 云南不同产地醇化雪茄烟叶微生物群落差异研究. 中国烟草科学. 2022(05): 87-93 . 本站查看
5. 张鑫,汤朝起,杨凯,李强,刘勇. 复烤片烟醇化过程耗氧规律及其影响因素分析. 中国烟草科学. 2021(01): 86-91 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 147
- HTML全文浏览量: 5
- PDF下载量: 120
- 被引次数: 7