高级检索

    基于YOLOv7-Sim和无人机遥感影像的烟株数量检测

    Tobacco Plant Number Detection Based on UAV Remote Sensing Image and YOLOv7-Sim

    • 摘要: 植株数是用于监测作物生长状况和估测产量的重要田间表型性状。为实现烟草植株数高效自动清点,针对无人机遥感影像烟株检测中存在小尺寸聚集目标容易漏检的问题,提出了一种YOLOv7目标检测优化模型YOLOv7-Sim。首先引入SimAM注意力机制增强图像特征之间的聚合能力;然后加入小目标检测层强化算法对小目标的检测能力;再对定位损失函数进行优化,引入了EIOU定位损失函数;最后利用分块策略解决大图像检测中小目标容易采样丢失的问题。在VisDrone2019数据集和本文构造的UAVTob无人机遥感影像烟草数据集上的检测结果显示,检测均值平均精确率mAP@0.5提升了0.3%和6.3%,mAP@0.5:0.95提升了0.6%和18.3%,YOLOv7-Sim算法对无人机遥感影像中的烟株检测更具优越性。

       

      Abstract: The plant number is an important field phenotypic trait in monitoring crop growth and estimating output. In order to establish an efficient tobacco plant number automatic counting technology, an optimized tobacco plant detection model YOLOv7-Sim based on YOLOv7 is proposed to solve the miss detection problem of small targets in UAV remote sensing images. First, the SimAM attention mechanism is introduced to enhance the aggregation ability between image features, and a small target detection layer is added to strengthen the detection ability of small targets, then EIOU is used to optimize the positioning loss function, and finally, a slicing strategy is used to solve the problem of small target sampling loss in large image detection. The experimental results on the Vis-Drone2019 dataset and the UAVTob dataset constructed in this study showed that the mean average accuracy rate mAP@0.5 of the detection results was increased by 0.3% and 6.3%, and the mean average accuracy rate mAP@0.5:0.95 was increased by 0.6% and 18.3%, which reflected the superiority of YOLOv7-Sim algorithm for tobacco detection in UAV remote sensing images.

       

    /

    返回文章
    返回